
Vulnerability Detection in
Mobile Applications using
State Machine Modeling

Wesley van der Lee
TUDelft
April 23th, 2018

Security Protocol Implementations:
Development and Analysis
(SPIDA)

Introduction

1. Introduction

 1 / 20

Research Goal

1. Introduction

 3 / 20

Outline

u  State Machine Learning
u  Mobile State Machine Learning
u  Vulnerability Detection

u  Results

u  Conclusion

1. Introduction

 4 / 20

Definition of a State Machine

Example State Machine 𝐴

•  States={​𝑞↓0 , ​𝑞↓1 , ​𝑞↓2 }
•  Start= ​𝑞↓0 
•  Transitions =

•  Alphabet={𝑎,𝑏}
•  Accepting states={ ​𝑞↓0 , ​
𝑞↓2 }

2. State Machine Learning

 5 / 20

MAT Framework
u Minimally Adequate Teacher (Angluin, 1988)

Teacher

Angluin, Dana. "Queries and concept learning" Machine learning 2.4 (1988): 319-342.

Membership	Query(input)	

Equivalence		
Query	

simulation(input)	

output	output	

Yes:	done	
No:	Counterexample	 •  Membership Queries

•  Equivalence Queries

Learner

2. State Machine Learning

SUT	

 6 / 20

Active Learning with L*
Implementation 𝐴

ε

ε

b

a

Observation
Table

Alphabet={𝑎,𝑏}

•  Rows:
•  Unique rows: identify states

𝑆 = Prefixes (row)
Suffixes (column)

1

0

1

ba 0

bb 0

Hypothesis ​𝐻↓1 

𝐸 =

2. State Machine Learning

Membership	Query	{ε,a,b}	
Output:	{ε=1,a=1,b=0}	

 7 / 20

Active Learning with L*
Implementation 𝐴

Hypothesis ​𝐻↓1 

2. State Machine Learning

Equivalence	Query	​𝐻↓1 		NO!	Counterexample:	ab	

ε b

ε 1 0

b 0 0

a 1 1

ba 0 0

bb 0 0

aa 0 0

ab 1 1

Hypothesis ​𝐻↓2 

Isberner, Malte, Falk Howar, and Bernhard Steffen. "The TTT Algorithm: A
Redundancy-Free Approach to Active Automata Learning." RV. 2014.

Equivalence	Query	​𝐻↓2 		YES:	Equivalent!	

Hypothesis ​𝐻↓2 

 8 / 20

Equivalence Queries

u  Conformance Testing
u  Random Walk

u HappyFlow

u  W-Method
u  P × ​Σ↑𝑛 ×𝑊 (Chow, 1978)

u  P × ​Σ↑𝑛 ×𝑊′ (Smetsers et al., 2016)

Chow, T.S. "Testing software design modeled by finite-state machines." IEEE transactions on software
engineering 3 (1978): 178-187.
Smetsers, R. et al. "Minimal separating sequences for all pairs of states." International Conference on Language
and Automata Theory and Applications. Springer International Publishing, 2016.

Implementation

2. State Machine Learning

 9 / 20

Mobile State Machine Learning

𝑤
𝑤

Appium	
command	 command	

OK/Error	
OK/Crash	1/0	

1/0	

Equivalence	

YES/Counterexample	

3. Mobile State Machine Learning

Appium	Mapper	

10 / 20

Problems when learning

3. Mobile State Machine Learning

11 / 20

Problems when learning

3. Mobile State Machine Learning

u  Non-deterministic behavior
u  Inconsistent cache
u  Cache Roll-Back

12 / 20

3. Mobile State Machine Learning

Video 13 / 20

3. Mobile State Machine Learning

9292 Model 14 / 20

Vulnerability Detection

u  Enrich Models

u  Define Vulnerability Algorithms
u  OWASP Top10 Mobile

u  i.e. Insecure Authentication:

Does there exist a path to a node after the login state without traversing the login state?

4. Vulnerability Detection

15 / 20

Results

u  InsecureBankV2
u  Known Vulnerable App

u  Fake WhatsApp
u  Adware

u  Malware Spreading

5. Results

16 / 20

InsecureBankV2

Improper Platform Usage

5. Results

Login

POST	http://57.97.2.11:8888/login	

Insecure Authentication

Insecure Communication

17 / 20

Fake WhatsApp
Background: Unicode trick allows malicious developers to impersonate WhatsApp developers
> 1M downloads, now deleted from Play Store

5. Results

18 / 20

Fake WhatsApp

Extraneous Functionality
•  SUT > REF: 100%
•  REF > SUT: 100%

Benign

Malicious

Insecure Communication
GET	http://req.startappserv	
ice.com/1.4/..	

5. Results

19 / 20

Run statistics

Run statistics

Conclusion

6. Conclusion

Mapper	 Appium	

•  RandomWalk + HappyFlow
•  W-Method Minimal

How can one identify weaknesses in mobile Android applications
through feasible behavioral state machine learning?

L*
TTT

20 / 20

Future work

u  It is feasible, but slow, possible speedups:

u  Obtaining the possible actions without testing

u  Using other information, e.g. the screen content, during learning

u  …

u  Performing the security analysis using a model checker

u  Solving inconsistencies caused by popups or the keyboard not closing

Thank You

