THE PROTOCOL LIFECYCLE

Roel Peeters

My background

* Design of authentication protocols, systems

* Privacy (untraceability) in RFID

* DB protocols

* SW Implementation

* ePassport projects

* CTO of n-Auth: Mobile authentication university spin-off

: *

@ » é\? » %l » Implementation » ; » 11

rpe o Deploy Maintain
Specification
Design & Model
‘ Standardisation

Analysis

... in reality

DESIGN & MODEL

Assumptions, security models, definitions

y Assumption is the
mother of all fuck ups

W |

Invasive attacks

e.g. extracting keys, breaking HW, key leakage, side channels...

e Model or not?
e Don’t overdo it...

(Un)linkability

A B

(Un)linkability

The Terrorist Fraud case

Related: cloning of prover (i.e. extracting keys)

Protection:

Typical TF-resistance: leak parts of key

User vs device authentication

Tradeoffs — privacy vs efficiency

Client Server
ClientHellg=—=== >
+key_shar,_if;’r‘r X
'}%@”\R ServerHello
//@ _______________________________ deyshare
L\ _ EncryptedExtensions
RS Certificate
CertificateVerify
< Finished
Finished >
ApplicationData < o > ApplicationData

Src: timtaubert.de

Tradeoffs — security vs efficiency

Client Server
ClientHello
+key_share
+early_data
Finished
ApplicationData
end_of_early_data (alert) >
ServerHello
+early_data (empty)
............................... e
EncryptedExtensions
ServerConfiguration
Certificate
CertificateVerify
< Finished
Finished >
ApplicationData « & > ApplicationData

Src: timtaubert.de

* Unrealistic properties/models
* Know model boundaries
* Look outside model

* Trade-offs

Reality check

STANDARDISATION

®
SC27 /SC31/SC37 /TC68 / ... I E T F

IEEE
STANDARDS
ASSOCIATION

4 IEEE

6 stages Action

Ml

ttee Committee consensus

National consensus

lEC ISO/IEC DIR 2

/LR
ISO
NI

Edition 6.0 2011-04

ISO/IEC Directives
Part 2

Rules for the structure and drafting of International Standards

Internet Engineering Task Force (IETF) P. Resnick
Request for Comments: 7282 Qualcomm Technologies, Inc.
Category: Informational June 2014
ISSN: 2070-1721

On Consensus and Humming in the IETF
Abstract

The IETF has had a long tradition of doing its technical work through
a consensus process, taking into account the different views among
IETF participants and coming to (at least rough) consensus on
technical matters. In particular, the IETF is supposed not to be run
by a "majority rule"” philosophy. This is why we engage in rituals
like "humming” instead of voting. However, more and more of our
actions are now indistinguishable from voting, and quite often we are
letting the majority win the day without consideration of minority
concerns. This document explains some features of rough consensus,
what is not rough consensus, how we have gotten away from it, how we
might think about it differently, and the things we can do in order
to really achieve rough consensus.

Politics

SPECIFICATION

Protocols... in theory

Client

a €ER

KSc

Server

KSs;a = AEADgNc,k (IDs, ATs(KSc, KSs))

Y

beEr
K = f(b,KS¢)

K = f(a, KSs)
IDs, ATS < AEADDEC’K(Q)
VERIFYp (ATs)

B = AEADg~c,k (IDc, ATc(KSs, KSc))

.
>

IDc, ATC «— AEADDEC,K(B)
VERIFYp (ATc)

—_—

... In practice

Implementation
attacks

Session management

Incoming errors

Client

a €ERr

Header: 0x01, Len_R1: 256, Encode(R1), ... }
Session ID? Addresses?

KSc

Server Check header

Decode
Source of randomness?
Session management

KSs;a = AEADgnc,k (IDs, ATs(KSc, KSs))

ber
K = f(b,KSc)

A

K = f(a, KSs)
IDs, ATS < AEADDEC’K(Q)
VERIFY p (ATs)

O Ewormessage

B = AEADgnc,k (IDc, ATc(KSs, KSc))

.
>

ID¢, ATc <+ AEADpEC,k (B)
VERIFYp, (ATc)

—_—

A look...

Client

ClientHello

+ key_share = seeea--- >

ClientHello

+ key_share = @ seeea--- >

{Certificate*}
{CertificateVerify*}

{Finished} @ =------- >
[Application Data] Caananaa >

Server

HelloRetryReqgquest
+ key_share

ServerHello

+ key_share
{EncryptedExtensions}
{CertificateRequest*}
{Certificate*}
{CertificateVerify*}
{Finished}
[Application Data¥*]

[Application Datal]

A look...

uintlé ProtocolVersion;
opaque Random([32];

uint8 CipherSuite[2]; /* Cryptographic suite selector */
struct {
ProtocolVersion legacy_ _version = 0x0303; /* TLS v1.2 */

Random random;
opaque legacy_session_id<0..32>;
CipherSuite cipher_ suites<2..2A16-2>;
opaque legacy_compression methods<l. .2A8-1>;
Extension extensions<0..2A1l6-1>;
} ClientHello;

A look...

The version and extensions fields have the same meanings as their
corresponding values in the ServerHello. The server SHOULD send only
the extensions necessary for the client to generate a correct
ClientHello pair. As with ServerHello, a HelloRetryRequest MUST NOT
contain any extensions that were not first offered by the client in
its ClientHello, with the exception of optionally the "cookie" (see
Section 4.2.2) extension.

Upon receipt of a HelloRetryRequest, the client MUST verify that the
extensions block is not empty and otherwise MUST abort the handshake
with a "decode_error" alert. Clients MUST abort the handshake with
an "illegal_parameter" alert if the HelloRetryRequest would not
result in any change in the ClientHello. If a client receives a
second HelloRetryRequest in the same connection (i.e., where the
ClientHello was itself in response to a HelloRetryRequest), it MUST
abort the handshake with an "unexpected _message" alert.

A look...

Client

ClientHello
+ key_share

ClientHello
+ key_share

{Certificate*}
{CertificateVerify*}
{Finished}
[Application Datal]

-------- >
Caeaanaana
-------- >
Coneaane =
-------- >
<emmmmnn >

Server

HelloRetryRequest
+ key_share

ServerHello

+ key_share
{EncryptedExtensions}
{CertificateRequest*}
{Certificate*}
{CertificateVerify¥*}
{Finished}
[Application Data*]

[Application Datal]

Formal verification claimed!?

The version and extensions fields have the same meanings as their
corresponding values in the ServerHello. The server SHOULD send only
the extensions necessary for the client to generate a correct
ClientHello pair. As with ServerHello, a HelloRetryRequest MUST NOT
contain any extensions that were not first offered by the client in
its ClientHello, with the exception of optionally the "cookie" (see
Section 4.2.2) extension.

Upon receipt of a HelloRetryRequest, the client MUST verify that the
extensions block is not empty and otherwise MUST abort the handshake
with a "decode error" alert. Clients MUST abort the handshake with
an "illegal_parameter" alert if the HelloRetryRequest would not
result in any change in the ClientHello. If a client receives a
second HelloRetryRequest in the same connection (i.e., where the
ClientHello was itself in response to a HelloRetryRequest), it MUST
abort the handshake with an "unexpected message" alert.

e Balance formalism with
abstraction

* Most exact specification =
formal spec

* Always capture security

Specifications

IMPLEMENTATION

Typical problems

Insecure

Reneg. O BREACH RC4

BEAST & CRIME

CRVAL

Typical problems

éas KRACK (2017)

Implementer

Does not know:

* Model, assumptions, crypto...

* ‘Trivial’ mistakes that have been made 100 times before
* What you really mean

* What the protocol is supposed to do

* Security properties

How to confuse an implementer

1. MUST This word, or the terms "REQUIRED" or "SHALL", mean that the definition is an
absolute requirement of the specification.

2. MUST NOT This phrase, or the phrase "SHALL NOT", mean that the definition is an
absolute prohibition of the specification.

3. SHOULD This word, or the adjective "RECOMMENDED", mean that there may exist valid

reasons in particular circumstances to ignore a particular item, but the full implications must
be understood and carefully weighed before choosing a different course.

SHOULD NOT

5. MAY This word, or the adjective "OPTIONAL", mean that an item is truly optional. ...

ow to confuse an implementer

Static domain parameters Dpicc

vV

v
N/

1

MSE: Set AT

2

General
Authenticate

3

General
Authenticate

4

General
Authenticate

5

General
Authenticate

Select parameters and password 1 (MRZ/CAN/PIN/PUK)
Certificate Holder Authorization Template (in EACv2)
OK:

-~ Empty Data Object:
Choose random nonce s :
=E (K, S) -
s=D (Ky, 2)

~4—————Data Required for MapToPoint()=———————r
Data Required for MapToP 0int(———-

D’ = MapToPoint(Dpicc,s, data)
Choose values for DH using D’

D’ = MapToPoint(Dpicc,s, data)
Choose values for DH using D’

- DH Value DHpcpr
DH Value DHpicc -

K = DH Key
KSwac= KDFyac(K)
KSenc= KDFenc(K)

K = DH Key
KSmac= KDFuac(K)
KSenc= KDFenc(K)

——————Tecp = MAC(KSac, DHpicc):
Verify Teeo :
Teice = MAC(KSwac, DHpcp)=

ISO 7816-4
commands

Verify Tpice

MSE: Set
DST

2
PSO: Verify
Certificate

3
MSE: Set
DST

4
PSO: Verify
Certificate

5
MSE: Set
DST

6
PSO: Verify
Certificate

7
MSE: Set AT

8
Get
Challenge

9

External
Authenticate

-—Set Digital Signature Template for verification

OK: >
- Link Certificatt
Verify cert (import permanently, if applicable); update internal time

OK: o

-a—Set Digital Signature Template for verification
OK: Lot

~g———————————Document Verifier (DV) Certificate:
Verify & import certificate; update internal time
OKs

-—Set Digital Signature Template for verification
OK: >

~————————————————Terminal Certificat

Verify & import certificate; update internal time (if official & domestic)
Extract PKpco

OK: »

¥ »

~g—Select terminal public key for external auth:

OK: >
- Empty Data Field:
Random rpicc (8 bytes)—>
s = Sign(SKecp, IDpice || rrice ||
Comp(DH Value from Chip Authentication))
-+ Signature

Verify signature; compute & grant effective authorisation
OK:

k

optional

One or more keys, static domain parameters Dpicc

PROTOCOL VARIANT WHEN ENCRYPTION IS NOT 3DES

1 ~a————Select parameters, choose chip key (if multiple)
MSE: Set AT OK >
Choose DH values from Dpicc
2 - DH Valu
General OK. »
Authenticate i
ISO 7816 K = DH Key (chip key, DH Value) K = DH Key (chip key, DH Value)
mapping KSwyac= KDFuac(K) KSwac= KDFuac(K)

KSenc= KDFenc(K)

KSenc= KDFenc(K)
Restart secure messaging

Restart secure messaaing

How to confuse an implementer

It can always be worse:

* EMV spec (biggest PKI in the world)

* Bluetooth spec

1|/ 2822 AR MO

Y £3 Bluetooth

Field Name Length Description Format
Recovered Data 1 Hex Value "6A' b
Header
Certificate Format 1 Hex Value "02' b
Issuer Identifier 4 Leftmost 3-8 digits from the PAN cn 8

(padded to the right with Hex 'F's)
Certificate Expiration 2 MMYY after which this certificate n4
Date 1s invalid
Certificate Serial 3 Binary number unique to this b
Number certificate assigned by the

certification authority
Hash Algorithm 1 Identifies the hash algorithm used b
Indicator to produce the Hash Result in the

digital signature scheme 3
Issuer Public Key 1 Identifies the digital signature b
Algorithm Indicator algorithm to be used with the

Issuer Public Key 3
Issuer Public Key 1 Identifies the length of the Issuer b
Length Public Key Modulus in bytes
Issuer Public Key 1 Identifies the length of the Issuer b
Exponent Length Public Key Exponent in bytes
Issuer Public Key or Nca-36 | If N1 < Nca — 36, consists of the full b
Leftmost Digits of the Issuer Public Key padded to the
Issuer Public Key right with Nca — 36 — N1 bytes of

value BB

If N1 > Nca — 36, consists of the

Nca — 36 most significant bytes of

the Issuer Public Key ¢
Hash Result 20 Hash of the Issuer Public Key and b

its related information
Recovered Data 1 Hex value 'BC' b

Trailer

Table 6: Format of Data Recovered from Issuer Public Key Certificate

e Simple to implement
* Limit interpretation
* No exceptions

* Guidance on sec. properties

State Diagrams

Discovery

Send Hello

Wait for
ServerParams

Stop

Select
ServerParams

Receive
Send HS1 ServerParams/
DoS-protect

Receive HS2

Process HS2

Send HS3

Connection
Established

Send/Receive
Data

Formal verification

.... of implementations?

= - ©

code reference

MAINTENANCE

Versioning

B3 B3 KB

Don’t!

Future proof:
Authenticated version list

(as part of protocol or elsewhere)

N
Backward compatibhity P

Modularity

LR N

o o o
> > >
< (aa] @)

LR N

N N N
> > >

i i i
< (@) > > >

Choices

/00 approach

I
or

vl v2

Hybrid

Balance:

* Algorithm/protocol agility
* Robustness

* Simplicity

(always ensure security)

Best approach?

