
THE PROTOCOL LIFECYCLE
Roel Peeters

My background

• Design of authentication protocols, systems
• Privacy (untraceability) in RFID
• DB protocols
• SW Implementation
• ePassport projects
• CTO of n-Auth: Mobile authentication university spin-off

Lifecycle
“Real World”

Standardisation

Implementation

Deploy

Design & Model

Maintain

Analysis

“Ideal World”

Specification

... in reality
Chaotic design phase Convergence

DESIGN & MODEL
5

Assumptions, security models, definitions

Assumption is the
mother of all fuck ups

Invasive attacks

e.g. extracting keys, breaking HW, key leakage, side channels...

• Model or not?
• Don’t overdo it...

(Un)linkability

A B

(Un)linkability

A B

The Terrorist Fraud case

Related: cloning of prover (i.e. extracting keys)

Typical TF-resistance: leak parts of key

Protection:

User vs device authentication

Tradeoffs – privacy vs efficiency

Src: timtaubert.de

Src: timtaubert.de

Tradeoffs – security vs efficiency

Reality check

• Unrealistic properties/models

• Know model boundaries

• Look outside model

• Trade-offs

STANDARDISATION

SC27 / SC31 / SC37 / TC68 / ...

Politics

SPECIFICATION

Protocols… in theory

… in practice
Header: 0x01, Len_R1: 256 , Encode(R1), … }
Session ID? Addresses?

Check header
Decode
Source of randomness?
Session management

Error Handling?
Error message

Implementation
attacks
Session management
Incoming errors

A look…

A look…

A look…

A look… Formal verification claimed!?

Specifications

• Balance formalism with
abstraction

• Most exact specification =
formal spec

• Always capture security

IMPLEMENTATION

Typical problems

2009

2011

2013

2013 2014

RC4

BEAST & CRIME

Insecure
Reneg. POODLE

2016

2013 2014

Typical problems

KRACK (2017)

Implementer

Does not know:
• Model, assumptions, crypto...
• ‘Trivial’ mistakes that have been made 100 times before
• What you really mean
• What the protocol is supposed to do
• Security properties

How to confuse an implementer

1. MUST This word, or the terms "REQUIRED" or "SHALL", mean that the definition is an
absolute requirement of the specification.

2. MUST NOT This phrase, or the phrase "SHALL NOT", mean that the definition is an
absolute prohibition of the specification.

3. SHOULD This word, or the adjective "RECOMMENDED", mean that there may exist valid
reasons in particular circumstances to ignore a particular item, but the full implications must
be understood and carefully weighed before choosing a different course.

4. SHOULD NOT ...
5. MAY This word, or the adjective "OPTIONAL", mean that an item is truly optional. ...

How to confuse an implementer

D4.1 SECURITY REQUIREMENTS FOR EPASSPORT LIFE CYCLE 284862
FIDELITY_KUL_D4.1_SECURITY-REQUIREMENTS_R1.0.DOCX 31/10/2012

FIDELITY Confidential Page 123/150

OK

Select parameters, choose chip key (if multiple)

OK

DH Value

1
MSE: Set AT

2
General

Authenticate

Choose DH values from DPICC

K = DH Key (chip key, DH Value)
KSMAC= KDFMAC(K)
KSENC= KDFENC(K)
Restart secure messaging

One or more keys, static domain parameters DPICC

K = DH Key (chip key, DH Value)
KSMAC= KDFMAC(K)
KSENC= KDFENC(K)

Restart secure messaging

Passive Authentication SHOULD be performed after
Chip Authentication v.1. Terminal Authentication
MUST be performed after Chip Authentication.

OK

Select parameters, choose chip key (if multiple), DH Value1
MSE: Set KAT

If chip authentication fails,
the previous session keys

remain valid.

K = DH Key (chip key, DH Value)
KSMAC= KDFMAC(K)
KSENC= KDFENC(K)
Restart secure messaging

K = DH Key (chip key, DH Value)
KSMAC= KDFMAC(K)
KSENC= KDFENC(K)

Restart secure messaging

ISO 7816-4
commands

ISO 7816
mapping

PROTOCOL VARIANT WHEN ENCRYPTION IS NOT 3DES

PROTOCOL VARIANT WHEN ENCRYPTION IS 3DES

Choose DH values using DPICC

Figure 16 - Chip Authentication v.1

D4.1 SECURITY REQUIREMENTS FOR EPASSPORT LIFE CYCLE 284862
FIDELITY_KUL_D4.1_SECURITY-REQUIREMENTS_R1.0.DOCX 31/10/2012

FIDELITY Confidential Page 119/150

`
OK

Set Digital Signature Template for verification

OK

Link Certificate

1
MSE: Set

DST

2
PSO: Verify
Certificate

s = Sign(SKPCD, IDPICC || rPICC ||
Comp(DH Value from Chip Authentication))

Verify cert (import permanently, if applicable); update internal time

7
MSE: Set AT

8
Get

Challenge

9
External

Authenticate

}

3
MSE: Set

DST

4
PSO: Verify
Certificate

`
OK

Set Digital Signature Template for verification

OK

Terminal Certificate

5
MSE: Set

DST

6
PSO: Verify
Certificate

Verify & import certificate; update internal time (if official & domestic)
Extract PKPCD

`
OK

Select terminal public key for external auth

Random rPICC (8 bytes)
Empty Data Field

optional

`
OK

Set Digital Signature Template for verification

OK

Document Verifier (DV) Certificate
Verify & import certificate; update internal time

OK

Signature s

Verify signature; compute & grant effective authorisation

Figure 14 - Terminal Authentication v.1

D4.1 SECURITY REQUIREMENTS FOR EPASSPORT LIFE CYCLE 284862
FIDELITY_KUL_D4.1_SECURITY-REQUIREMENTS_R1.0.DOCX 31/10/2012

FIDELITY Confidential Page 114/150

`

`

`

`

`

`
OK

Select parameters and password π (MRZ/CAN/PIN/PUK)
Certificate Holder Authorization Template (in EACv2)

z = E (Kπ, s)

Empty Data Object

Data Required for MapToPoint()

Data Required for MapToPoint()

DH Value DHPICC

DH Value DHPCD

TPICC = MAC(KSMAC,DHPCD)

TPCD = MAC(KSMAC,DHPICC)

Choose random nonce s

s = D (Kπ, z)

Static domain parameters DPICC

D’ = MapToPoint(DPICC,s, data)
Choose values for DH using D’

D’ = MapToPoint(DPICC,s, data)
Choose values for DH using D’

K = DH Key
KSMAC= KDFMAC(K)
KSENC= KDFENC(K)

K = DH Key
KSMAC= KDFMAC(K)
KSENC= KDFENC(K)

Verify TPCD

Verify TPICC

1
MSE: Set AT

2
General

Authenticate

3
General

Authenticate

4
General

Authenticate

5
General

Authenticate

ISO 7816-4
commands

Figure 12 - PACE

C.3 Passive Authentication
Passive authentication is a continuous process, specified in [18]. More precisely, a terminal performs
passive authentication in order to check the authenticity of integrity-protected data items it reads from the
chip’s storage. For example, when the terminal retrieves the chip’s key that is to be used for Chip
Authentication (v1 or v2) or for Active Authentication, then the authenticity of this key MUST be checked.
Similarly, when the terminal reads the electronic version of the MRZ data, which is also stored in the file
DG1, then it performs passive authentication in order to authenticate this data.
In order to perform passive authentication, the following steps are performed (the description is taken from
[18]).

“1. The Document Security Object (SOD) (OPTIONALLY containing the Document Signer
Certificate (CDS)) is read from the chip.
2. The Document Signer (DS) is read from the Document Security Object (SOD).

How to confuse an implementer

It can always be worse:
• EMV spec (biggest PKI in the world)
• Bluetooth spec

Goals

• Simple to implement

• Limit interpretation

• No exceptions

• Guidance on sec. properties

State Diagrams

Formal verification

.... of implementations?

code reference

~

MAINTENANCE
39

Versioning

V1 V2 V3

Backward compatibility ?

Don’t!

Future proof:
Authenticated version list

(as part of protocol or elsewhere)

Modularity

B

C

A

B v1

C v1

A v1

B v2

C v2

A v2

B v3

C v3

A v3

Choices

A A’ A’’or or

Zoo approach

A A’or

B B’ B’’or or

C

A A’ A’’or or

B’ B’’or

C’ C’’or

v1 v2

Hybrid

B v1

C v1

A v1

B v2

C v2

A v2

B v3

C v3

A v3

A’ A’’ A’’ A’’’ A’’’

Best approach?

Balance:

• Algorithm/protocol agility

• Robustness

• Simplicity

(always ensure security)

