
Automotive	Cyber	Security:	Lessons	
Learned	and	Research	Challenges	

SPIDA		Keynote	Talk		
	
	

Flavio	Garcia	
University	of	Birmingham	

Joint	work	with		

Roel	Verdult,	David	Oswald,	Timo	Kasper,	Josep	
Balasch,	Baris	Ege,	Pierre	Pavlides… 	

The	automotive	industry	has	
undergone	a	major	transformation	

Mechanical	

Digital	

Shift	in	Responsibility	and	Culture	

Software		
	

EULA:	This	software	is	
provided	“as	is”	without	
warranty	of	any	kind…	The	
entire	risk	arising	out	of	use	
or	performance	of	the	this	
SOFTWARE	remains	with	the	
user.	
	
Release	now	patch	later	

Mechanical	
	

OEMs	traditionally	
shift	responsibility	
to	Tier	1	Suppliers	
	

Testing:	

Current	Vehicles	

				

•  3G	
•  Bluetooth	
•  WiFi	

•  ~50	ECUs	(Electronic	
Control	Units)		

•  Outdated	firmware	
•  Weak	firmware	
protection	

•  No	source	code	

How	is	this	all	going	so	far?	

•  Not	great	
•  Security	is	a	“Market	for	Lemons”	(and	
everyone	is	selling	rotten	ones)	

•  We	lack	an	open	discussion	and	more	
transparency	about	security	(weaknesses)	

•  We	need	better	security	engineering	
•  I’ll	give	a	few	examples	of	this	next.		
– Let’s	have	a	look	at	car	keys	

Remote	Keyless	Entry	(RKE)	
§  Active	UHF	transmitter	

(315	/	433	/	868	MHz)	
§  Unidirectional	
§  Sometimes	integrated	

with	immobilizer	chip	
(“hybrid”),	sometimes	
separate	

	

Immobilizer	(Immo)	
§  Passive	RFID	at	125	kHz	
§  Prevents	hot-wiring	

	

7	

Main	immobiliser	chips	used	(2012-15)	

•  TI’s	DST	 	 	 	 	 	 	 	 	 	(40-bit	key)	
–  “Security	Analysis	of	a	Cryptographically-Enabled	RFID	
Device” 	 	 	 		 	 	Bono	et	al.	[Usenix	Security’05]	

•  NXP’s	Hitag2		 	 	 	 	 	 	 	(48-bit	key)
	 	 	 	 	 	 	 	 	 			 	 	[Usenix	Security’12]	

•  EM’s	Megamos	Crypto	(VAG) 	 	 	(96-bit	key)	
	 	 	 	 	 	 	 	 	 	 	 	[Usenix	Security’13]	
	 	 	 	 	 	 	 	 	 	 	 	[Usenix	Security’15]	

		

Hitag2	Usage	

Makes	&	Models	(2012)	

Unbreakable security levels using mutual authentication,
challenge-response and encrypted data communication

Hitag2	Authentication	Protocol	

id = 32-bit identifier

nR = reader nonce
{aR} = encrypted reader answer

{aT} = encrypted transponder answer

•  No transponder nonce
•  No mutual authentication

Hitag2	Cipher	

•  48	bit	internal	state	(LFSR	stream	a0a1…)	
a0…a31	=	id0…id31	
a32…a47	=	k0…k15	
				a48+i	=	k16+i							{nr}i										ƒ(ai…a47+i)										i						[0,31]	

	

Initialized	LFSR	=	a32…a79	
	
	

Hitag2	Cipher	

•  Dependencies	between	sessions	
– Reader	nonce	(nR)	is	only	32	bits	
– LFSR0…LFSR15	are	fixed	over	all	sessions,	
regardless	of	nR	

Hitag2	Cipher	

•  Filter	function	weakness	
– 4	bits	cover	14	bits	of	the	internal	state	
–  In	8	of	the	32	configurations,	the	output	of	ƒc	is	
not	influenced	by	the	last	(rightmost)	input	bit	

– With	probability	¼	the	output	is	determined	by	
the	first	34	bits	of	the	LFSR	–	“Golden	Property”	

Cryptanalytic	Attack	
•  Gather	136	authentication	attempts	from	the	car	

(~1	minute)	

•  Use	first	cipher	weakness	to	combine	different	
reader	nonces	

•  Try	for	every	234	cipher	state	(~5	minutes)	
– ¼	of	the	136	traces	(≈34)	have	the	“Golden	Property”	
– Test	if	first	keystream	bit	of	{ar}	is	consistent	
– Verify	handful	of	candidate	keys	against	another	trace	

•  Total	attack	time	is	360	seconds		
– This	motivates	the	title	of	our	Usenix’12	paper		
“Gone	in	360	Seconds:	Hijacking	with	Hitag2”		

Immobilizer	Demo	

Responsible	disclosure	

•  Notified	the	chip	manufacturer	NXP	6	months	
ahead	of	publication	
– NXP	Verified	and	acknowledged	our	findings	
– Collaborated	constructively	by	discussing	
mitigating	measures	

•  Immobilizer	based	on	AES	cost	only	a	couple	
dollars	more	

•  NXP:	the	attack	does	not	work	in	a	car-only	
scenario	

Is	this	attack	car-only?	

•  Not	quite	–	due	to	whitelisting	of	transponder	id	
•  Remember:	

Whitelist:	

id1	 k1	

id2	 k2	

id3	 k3	
We	will	revisit	this	point	later	on…	

Megamos	Crypto	Usage	(2013)	
suspect the use of so-called ‘car diagnostic’ devices. Such a device uses all kind
of custom and proprietary techniques to bypass the immobilizer and start a car
without a genuine key. This motivated us to evaluate the security of vehicle
immobilizer transponders.

Make Models
Alfa Romeo 147, 156, GT

Audi
A1, A2, A3, A4 (2000), A6, A8 (1998), Allroad, Cabrio, Coupé,
Q7, S2, S3, S4, S6, S8, TT (2000)

Buick Regal
Cadillac CTS-V, SRX
Chevrolet Aveo, Kalos, Matiz, Nubira, Spark, Evanda, Tacuma
Citroën Jumper (2008), Relay
Daewoo Kalos, Lanos, Leganza, Matiz, Nubira, Tacuma
DAF CF, LF, XF
Ferrari California, 612 Schaglietti

Fiat
Albea, Doblò, Idea, Mille, Multipla, Palio, Punto (2002),
Seicento, Siena, Stilo (2001), Ducato (2004)

Holden Barina, Frontera

Honda
Accord, Civic, CR-V, FR-V, HR-V, Insight, Jazz (2002, 2006),
Legend, Logo, S2000, Shuttle, Stream

Isuzu Rodeo
Iveco Eurocargo, Daily
Kia Carnival, Clarus, Pride, Shuma, Sportage

Lancia Lybra, Musa, Thesis, Y
Maserati Quattroporte
Opel Frontera

Pontiac G3
Porsche 911, 968, Boxster
Seat Altea, Córdoba, Ibiza (2014), Leon, Toledo
Skoda Fabia (2011), Felicia, Octavia, Roomster, Super, Yeti

Ssangyong Korando, Musso, Rexton
Tagaz Road Partner

Volkswagen

Amarok, Beetle, Bora, Caddy, Crafter, Cross Golf,
Dasher, Eos, Fox, Gol, Golf (2006, 2008), Individual,
Jetta, Multivan, New Beetle, Parati, Polo, Quantum,
Rabbit, Saveiro, Santana, Scirocco (2011), Touran,
Tiguan (2010), Voyage, Passat (1998, 2005), Transporter

Volvo
C30, S40 (2005), S60, S80, V50 (2005), V70, XC70,
XC90, XC94

Figure 2: Vehicles that used Megamos Crypto for some version/year [11].
Boldface and year indicate specific vehicles we experimented with.

1.1 Related work

In the last decades, semiconductor companies introduced several proprietary
algorithms specifically for immobilizer security. Their security often depends
on the secrecy of the algorithm, contrary to Kerckhoffs’s principle. When their
inner-workings are uncovered, it is often only a matter of weeks before the first
attack is published. There are several examples in the literature that address the
insecurity of proprietary algorithms [16]. There are four widely used immobilizer
transponders that depend on proprietary cryptography, DST, KeeLoq, Hitag2
and Megamos Crypto, which were all proven to be insecure [1, 3, 18, 19]. The
latter appeared in the 24th USENIX Security 2015 conference and is used as a
base for this article.

3

Tag	Memory	layout		
(from	datasheet)	

	

USENIX Association 22nd USENIX Security Symposium 707

• When l0 = 1, all writing is disabled. However, it
does not affect the read access conditions. This
means that the key k, PIN code pin can not be read
out and the user memory um becomes read-only.
Because the lock-bits l are stored in a user memory
block they can always be read out.

The EM4170 allows to set the lock-bit l0 back to zero
using a PIN code pin. A valid PIN code resets the access
conditions and enables again writing of k, pin, um and
l. The PIN code has to be known or overwritten to the
transponder before it is locked, otherwise an exhaustive
search of the PIN code is required.

Block Content Denoted by

0 user memory um0 . . .um15

1 user memory, lock bits um16 . . .um29l0l1
2 device identification id0 . . . id15

3 device identification id16 . . . id31

4 crypto key k0 . . .k15

5 crypto key k16 . . .k31

6 crypto key k32 . . .k47

7 crypto key k48 . . .k63

8 crypto key k64 . . .k79

9 crypto key k80 . . .k95

10 pin code pin0 . . . pin15

11 pin code pin16 . . . pin31

12 user memory um30 . . .um45

13 user memory um46 . . .um61

14 user memory um62 . . .um77

15 user memory um78 . . .um93

read-only

write-only

read-write

Figure 4: Megamos Crypto transponder memory layout

3.2 Functionality and communication

The Megamos Crypto transponder supports four dif-
ferent operations: read, write, reset and
authenticate.

• read operations are performed by three dif-
ferent commands, each returns multiple blocks.
The transponder returns the concatenation of
these blocks in one bitstring. The three avail-
able bitstrings are id31 . . . id0, l1l0um29 . . .um0 and
um93 . . .um30.

• write stores a 16-bit memory block in the mem-
ory of the transponder. The arguments for this com-
mand are the block number and the data. After
receiving the command, the transponder stores the
data in memory if the access conditions allow the
requested write operation.

• reset takes the id and 32-bit PIN code as an ar-
gument. If the PIN code matches the value that is
stored in pin, then the lock-bit l0 is reset, see Sec-
tion 3.1 for more details about l0.

• authenticate takes three arguments. The first
one is a 56-bit car nonce nC. The second argument

is a bitstring of 7 zero bits. The datasheet [21] refers
to them as “divergency bits”. It seems that these
bit-periods are used to initialize the cipher. In Sec-
tion 3.6 we show that the authentication protocol ex-
actly skips 7 cipher steps before it starts generating
output. The third argument is a 28-bit authentica-
tor from the car aC. If successful, the transponder
responds with its 20-bit authenticator aT .

When the driver turns on the ignition, several back-
and-forward messages between the car and transponder
are exchanged. It starts with the car reading out the
transponder memory blocks that contains the identity,
user memory and lock-bits. Next, the car tries to authen-
ticate using the shared secret key k. If the authentication
fails, the car retries around 20 times before it reports on
the dashboard that the immobilizer failed to authenticate
the transponder. Figure 5 shows an eavesdropped trace
of a German car that initializes and authenticates a Meg-
amos Crypto transponder.

To the best of our knowledge, there is no publicly
available document that describes the structure of Meg-
amos Crypto cipher. However, a simplified representa-
tion of the authentication protocol is presented in the
EM4170 application note [23] as shown in Figure 6.
It does not specify any details beyond the transmitted
messages and the checks which the car and transpon-
der must perform. The car authenticates by sending a
nonce nC = Random and the corresponding authentica-
tor aC = f (Rnd,K). When the car successfully authenti-
cated itself, the Megamos Crypto transponder sends the
transponder authenticator aT = g (Rnd, f ,K) back to car.

��&�'%�*1(, ��1

�

���&����

 ��&������

�

�
�����
����

�*1(, ��1

�

���&����

 ��&������

�

��
��������

���",

�&�

	���",

���&����

	���",

 ��&������

'�#�

&'���,"'&

&'���,"'&

��&�'%�*1(, ��1

�

���&����

 ��&������

�

�
�����
����

�*1(, ��1

�

���&����

 ��&������

�

��
��������

���",

�&�

	���",

���&����

	���",

 ��&������

'�#�

&'���,"'&

&'���,"'&

Figure 6: Authentication procedure excerpt from [23]

For communication the Megamos Crypto transponder
uses a low frequency wave of 125 kHz and applies am-
plitude shift keying (ASK) modulation by putting a small
resistance on the electro magnetic field. It utilizes a cus-

5

Megamos	Authentication	Protocol	

id = 32-bit Tag identifier

nC = 56-bit Car nonce
aC = 28-bit Car authenticator (keystream)

aT = 20-bit Tag authenticator (keystream)

id
←−−−−−−−−

nC , aC
−−−−−−−−→

aT
←−−−−−−−−

Figure 4: Megamos Crypto authentication protocol

before it reports on the dashboard that the immobilizer failed to authenticate
the transponder. Figure 5 shows an eavesdropped trace of a German car that
initializes and authenticates a Megamos Crypto transponder using the 96-bit
key 000000000000010405050905. The structure of the secret key of the car
suggests that it has an entropy of only 24 bits.

Origin Message Description

Car 3 Read identifier
Transponder A9 08 4D EC Identifier id31 . . . id0
Car 6 | 3F FE 1F B6 CC 51 3F | 07 | F3 55 F1 A Authentication, nC55

. . . nC0
, 07, aC

Transponder 60 9D 6 Car authenticated successful, send back aT

Figure 5: Eavesdropped Megamos Crypto authentication trace.

3.2 Cryptographic algorithm

Several after-market diagnostic and locksmith tools such as the Tmpro2, Mir-
aClone, AVDI and Tango programmer implement the Megamos Crypto cipher
for transponder production and verification. Non of these tools is able to recover
the secret key of a transponder or perform any kind of cryptanalysis. However,
the software package that comes with the Tango Programmer implements all
cryptographic operations of the transponder including the Megamos Crypto ci-
pher. We have analysed the software thoroughly and extracted the algorithm
from it. The Megamos Crypto cipher consists of five main components: a Galois
Linear Feedback Shift Register, a non-linear Feedback Shift Register, and three
7-bit registers. A schematic representation of the cipher is depicted in Figure 6.

4 Cryptanalysis of Megamos Crypto

In our original paper [19] we have proposed a cryptanalysis which compro-
mises all vehicles using Megamos Crypto. This cryptanalysis requires an adver-
sary to eavesdrop two successful authentication traces between the car and the
transponder to recover the 96-bit secret key. We would like to emphasize that
in order to get this two traces, a perpetrator needs access to both the car and
the original car key. Our cryptanalysis reduces the computational complexity
from 296 (of a brute force attack) to 256 encryptions. This could be computed
within two days on a copacobana which is a FPGA-based massively-parallel
computer. Once that the secret key is recovered it is possible to emulate the
original transponder, effectively cloning the original key.

The cryptanalysis described above exploits the following weaknesses.

5

NEC	uPD78P083	has	simply	no	protection	

…	you	can	read	it	directly	from	the	car’s	ECU	

Cryptanalysis	-	Pre-requisites	

•  Requires	access	to	the	car	
and	the	car	key	

•  Adversary	needs	to	turn	
the	ignition	on	twice	and	
eavesdrop	two	traces	

708 22nd USENIX Security Symposium USENIX Association

Origin Message Description

Car 3 Read identifier
Transponder A9 08 4D EC Identfier id31 . . . id0

Car 5 Read user memory and lock-bits
Transponder 80 00 95 13 First user memory l1l0um29 . . .um0

Car F Read large user memory (EM4170)
Transponder AA AA AA AA AA AA AA AA Second user memory um93 . . .um30

Car 6 | 3F FE 1F B6 CC 51 3F | 07 | F3 55 F1 A Authentication, nC55
. . .nC0

, 07, aC

Transponder 60 9D 6 Car authenticated successful, send back aT

Figure 5: Eavesdropped Megamos Crypto authentication using the 96-bit key 000000000000010405050905.
The structure of the secret key of the car suggests that it has an entropy of only 24 bits.

tom encoding scheme for status bits and a Manchester
encoding scheme for transmitting data bits. The Meg-
amos Crypto immobilizer unit signals the transponder to
receive a command by dropping the field two consecutive
times in a small time interval. Then it drops the field a
few microseconds to modulate a zero and leaves the field
on to modulate a one.

This way of modulation introduces the side-effect that
the immobilizer unit and the transponder could get out-
of-sync. When the immobilizer unit sends a bitstring
of contiguous ones, there are no field drops for almost
15 milliseconds. The manufacturer realized this was a
problem, but instead of proposing an alternative com-
munication scheme they suggest to choose random num-
bers with more zeros’s than ones and especially avoid se-
quential ones [23]. From a security perspective it sounds
like a bad idea to suggest to system integrators that they
should effectively drop entropy from the used random
numbers.

To get a fair estimate of communication timings we
did some experiments. With our hardware setup we were
able to reach the highest communication speed with the
transponder that is possible according to the datasheet.
It allows us to read out the identifier id in less than 14
milliseconds and successfully authenticate within 34 mil-
liseconds. These timings confirm that an adversary can
wirelessly pickpocket the identifier and all its user mem-
ory in less than a second from a distance of one inch.
Standing close to a victim for only a fraction of a second
enables the adversary to gather the transponder identifier.
When this identifier is emulated to the corresponding
car, it is possible to gather partial authentication traces.
Because the transponder lacks a random generator, this
partial traces can later be used to retrieve the responses
from the transponder which extends them to successful
authentication traces. With a number of successful au-
thentication traces it is possible to recover the secret key
as described in Section 5.

3.3 Reverse-engineering the cipher

Recent articles point out the lack of security [11, 40, 41]
in modern cars. The software in existing cars is designed
with safety in mind, but is still immature in terms of se-
curity. Legacy protocols and technologies are often vul-
nerable to a number of remote and local exploits.

Most car keys need to be preprogrammed, which is
also referred to as pre-coded, before they can be asso-
ciated to a car. During this initialization phase the user
memory blocks are filled with manufacturer specific data
to prevent mixing of keys. This step adds no security, it
just restricts the usage of keys that were meant a specific
car make or model.

There are several car locksmith tools456 in the after
market that can initialize or change such transponder
data. Such tools fully support the modulation/encoding
schemes and communication protocol of the Meg-
amos Crypto transponder. They implement some pub-
licly available functionality like the read, write and
reset commands. However, they do not implement
the authentication protocol. To perform a successful au-
thentication, knowledge of the Megamos Crypto cipher
is necessary to compute the authentication messages aC

and aT .

More advanced car diagnostic tools like AVDI7 and
Tango Programmer8 offer functionality that goes beyond
“legitimate” usage. These devices are able to dump the
board-computer memory, recover the dealer code, and
add a new blank transponder to the car. For this the tools
do not require a genuine key to be present but they do
need physical access to the can bus.

These diagnostic tools use the Megamos Crypto au-
thentication functionality to speed up the process of
adding new transponders to the car. For this, the tool
needs the Megamos Crypto algorithm to compute valid

4http://www.istanbulanahtar.com
5http://www.advanced-diagnostics.co.uk
6http://www.jmausa.com
7http://www.abritus72.com
8 http://www.scorpio-lk.com

6

Cryptanalysis	of	the	cipher	

The	Megamos	Crypto	Cipher	

Secret	key	size	=	96	bits	
Internal	state	size	=	23	+	13	+	3x7	=	57	bits			

710 22nd USENIX Security Symposium USENIX Association

0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6

⊕⊕ ⊕ ⊕ ⊕⊕ ⊕

fo

output

l m r

0 1 2 3 4 5 6 7 8 9 101112 131415 16171819202122

0 1 2 3 4 5 6 7 8 9 101112

⊕⊕⊕ ⊕ ⊕ ⊕⊕

input

j = l1 ⊕m6

fl fm fr input

g h

⊕ ⊕

⊕⊕

⊕g22

Figure 7: Schematic representation of the cipher

Definition 3.8. The non-linear output filter function

fo : F20
2 → F2 has been deliberately omitted in this pa-

per.

Definition 3.9 (Output). Define the function

output: F57
2 ×F2 → F2 which takes as input an in-

ternal state s = ⟨g,h, l,m,r⟩ and an input i ∈ F2 and
returns the bit

fo(abcl0l2l3l4l5l6m0m1m3m5r0r1r2r3r4r5r6)

where

a = fl(g0g4g6g13g18h3)⊕ g22⊕ r2⊕ r6

b = fm(g1g5g10g15h0h7)⊕ l0⊕ l3⊕ l6

c = fr(g2(g3⊕ i)g9g14g16h1)⊕ m0⊕ m3⊕ m6

We also overload the function output on multiple-bit in-

put which takes a state s and an input i ∈ F
n+ 1
2 as

output(s, i0 . . . in) = output(s, i0) ·output(s′, i1 . . . in)

where s′ = suc(s, i0).

3.5 Cipher initialization

The following sequence of definitions describe how the
cipher is initialized.

Definition 3.10. Let init : F23
2 ×F

n+ 1
2 → F

n+ 24
2 be de-

fined as

init(g,ε) := g

init(g,x0 . . .xn) := init(G(g,0,xn),x0 . . .xn− 1) ·g22

Definition 3.11. Let p ∈ F56
2 ,q∈ F44

2 and t ∈ F43
2 be de-

fined as

p := nC0
. . .nC55

+ k40 . . .k95 mod 256

q:= (p2 . . . p45)⊕ (p8 . . . p51)⊕ (p12 . . . p55)

t := init(q20 . . .q42,q0 . . .q19)
Then, the initial cipher state s0 = ⟨g,h, l,m,r⟩ is defined

as

g:= t0 . . . t22

h := 0p0 . . . p11

l := t23 . . . t29

m := t30 . . . t36

r := t37 . . . t42q43

3.6 Authentication protocol

This section describes the authentication protocol be-
tween a Megamos Crypto transponder and the vehicle
immobilizer. This protocol is depicted in Figure 8. An
annotated example trace is shown in Figure 5.

Definition 3.12. Given a key k = k0 . . .k95 ∈ F96
2 and an

initial state s0 as defined in Definition 3.11, the internal

state of the cipher at step i is defined as

si := suc(si− 1,k40− i) ∀i ∈ [1 . . .40]

si+ 41 := suc(si+ 40,0) ∀i ∈ N

During authentication, the immobilizer starts by send-
ing an authenticate command to the transponder. This
command includes a 56-bit nonce nC and the 28 bits aC

output by the cipher from state s7. Then, the transponder
responds with the next 20 output bits aT , i.e., produced
from state s35.

8

•  Total	attack	complexity	reduced	from	296	to	
less	than	256	encryptions		

•  Takes	less	than	two	days	on	an	FPGA	
•  This	complexity	can	be	further	reduced	by	
pre-computation:	
– E.g.,	using	a	12	Terabyte	table	reduces	the	
complexity	to	249	table	lookups	

– This	has	some	practical	limitations	

Cryptanalysis	of	Megamos	Crypto	

Partial	Key-update	Attack	

Observations:	
	
During	our	research,	the	majority		
of	deployed	tags	we	found	were:	
•  Unlocked	l0	=	0	(writable)	
•  Could	be	unlocked	with	a		
default	PIN	code		

•  The	96-bit	secret	key	is	written	to	the	
tag	in	blocks	of	16	bits	instead	of	
being	an	atomic	operation.	

USENIX Association 22nd USENIX Security Symposium 707

• When l0 = 1, all writing is disabled. However, it
does not affect the read access conditions. This
means that the key k, PIN code pin can not be read
out and the user memory um becomes read-only.
Because the lock-bits l are stored in a user memory
block they can always be read out.

The EM4170 allows to set the lock-bit l0 back to zero
using a PIN code pin. A valid PIN code resets the access
conditions and enables again writing of k, pin, um and
l. The PIN code has to be known or overwritten to the
transponder before it is locked, otherwise an exhaustive
search of the PIN code is required.

Block Content Denoted by

0 user memory um0 . . .um15

1 user memory, lock bits um16 . . .um29l0l1
2 device identification id0 . . . id15

3 device identification id16 . . . id31

4 crypto key k0 . . .k15

5 crypto key k16 . . .k31

6 crypto key k32 . . .k47

7 crypto key k48 . . .k63

8 crypto key k64 . . .k79

9 crypto key k80 . . .k95

10 pin code pin0 . . . pin15

11 pin code pin16 . . . pin31

12 user memory um30 . . .um45

13 user memory um46 . . .um61

14 user memory um62 . . .um77

15 user memory um78 . . .um93

read-only

write-only

read-write

Figure 4: Megamos Crypto transponder memory layout

3.2 Functionality and communication

The Megamos Crypto transponder supports four dif-
ferent operations: read, write, reset and
authenticate.

• read operations are performed by three dif-
ferent commands, each returns multiple blocks.
The transponder returns the concatenation of
these blocks in one bitstring. The three avail-
able bitstrings are id31 . . . id0, l1l0um29 . . .um0 and
um93 . . .um30.

• write stores a 16-bit memory block in the mem-
ory of the transponder. The arguments for this com-
mand are the block number and the data. After
receiving the command, the transponder stores the
data in memory if the access conditions allow the
requested write operation.

• reset takes the id and 32-bit PIN code as an ar-
gument. If the PIN code matches the value that is
stored in pin, then the lock-bit l0 is reset, see Sec-
tion 3.1 for more details about l0.

• authenticate takes three arguments. The first
one is a 56-bit car nonce nC. The second argument

is a bitstring of 7 zero bits. The datasheet [21] refers
to them as “divergency bits”. It seems that these
bit-periods are used to initialize the cipher. In Sec-
tion 3.6 we show that the authentication protocol ex-
actly skips 7 cipher steps before it starts generating
output. The third argument is a 28-bit authentica-
tor from the car aC. If successful, the transponder
responds with its 20-bit authenticator aT .

When the driver turns on the ignition, several back-
and-forward messages between the car and transponder
are exchanged. It starts with the car reading out the
transponder memory blocks that contains the identity,
user memory and lock-bits. Next, the car tries to authen-
ticate using the shared secret key k. If the authentication
fails, the car retries around 20 times before it reports on
the dashboard that the immobilizer failed to authenticate
the transponder. Figure 5 shows an eavesdropped trace
of a German car that initializes and authenticates a Meg-
amos Crypto transponder.

To the best of our knowledge, there is no publicly
available document that describes the structure of Meg-
amos Crypto cipher. However, a simplified representa-
tion of the authentication protocol is presented in the
EM4170 application note [23] as shown in Figure 6.
It does not specify any details beyond the transmitted
messages and the checks which the car and transpon-
der must perform. The car authenticates by sending a
nonce nC = Random and the corresponding authentica-
tor aC = f (Rnd,K). When the car successfully authenti-
cated itself, the Megamos Crypto transponder sends the
transponder authenticator aT = g (Rnd, f ,K) back to car.

��&�'%�*1(, ��1

�

���&����

 ��&������

�

�
�����
����

�*1(, ��1

�

���&����

 ��&������

�

��
��������

���",

�&�

	���",

���&����

	���",

 ��&������

'�#�

&'���,"'&

&'���,"'&

��&�'%�*1(, ��1

�

���&����

 ��&������

�

�
�����
����

�*1(, ��1

�

���&����

 ��&������

�

��
��������

���",

�&�

	���",

���&����

	���",

 ��&������

'�#�

&'���,"'&

&'���,"'&

Figure 6: Authentication procedure excerpt from [23]

For communication the Megamos Crypto transponder
uses a low frequency wave of 125 kHz and applies am-
plitude shift keying (ASK) modulation by putting a small
resistance on the electro magnetic field. It utilizes a cus-

5

Partial	Key-update	Attack	(simple)	

•  Get	one	authentication	attempt	from	the	car	
•  Guess	16	bits,	write	on	one	block	then	authenticate	to	
the	tag.	

•  If	it	succeeds	you	learn	16	key	bits.	
•  This	requires	6	x	216	writes	and	authenticate	
•  Takes	25’	per	block	≈	2.5	hours	in	total,	using	a	Proxmark	

0000		

16	 96	0	

Block	1	 Block	2	 Block	3	 Block	4	 Block	5	0001		0002		0003		 0000		0001		E4F2		 18AC	 FF52	 7B22	 88C9	

32	 48	 64	 80	

Partial	Key-update	Attack	(optimized)	

•  Same	principle	but	only	write	zeros	once	in	the	first	block	
•  Then	increment	the	nonce	and	authenticate	until	the	tag	
accepts	
–  key	is	added	to	nonce	during	initialisation	

•  Repeat	for	another	two	blocks	then	combine	with	the	
cryptanalytic	attack	searching	for	the	remaining	bits	

•  This	attack	requires	6	writes	and		3	x	216		authentications	
with	the	tag	and	negligible	computational	complexity	

•  The	whole	attack	takes	<30	minutes	using	a	Proxmark	III	

0000		

16	 96	0	

Block	1	 Block	2	 Block	3	 Block	4	 Block	5	0003		 0000		E4F2		 FF52	 7B22	0000		 88C9	18AC	

32	 48	 64	 80	

Immobilizer	Demo	

Responsible	disclosure	

•  We	informed	the	chip	manufacturer	(EM)	9	months	
ahead	of	scheduled	publication	

•  This	paper	was	first	accepted	at	Usenix	Security’13	
•  VW	sought	an	injunction	from	the	High	Court	of	London	
to	prevent	publication	

•  The	High	Court	of	London	granted	an	interim	injunction	
and	therefore	we	had	to	withdraw	the	article		

•  We	have	now	reached	an	amicable	settlement	without	
any	admission	of	liability	

•  The	paper	was	finally	published	at	Usenix	Security’15	
with	minor	redactions	

Remote	Keyless	Entry	(RKE)	
§  Active	UHF	transmitter	

(315	/	433	/	868	MHz)	
§  Unidirectional	
§  Sometimes	integrated	

with	immobilizer	chip	
(“hybrid”),	sometimes	
separate	

	

Immobilizer	(Immo)	
§  Passive	RFID	at	125	kHz	
§  Many	broken	systems	

(DST40,	Hitag2,	
Megamos)	

	

33	

History	of	RKE:	Fix	Codes	

uid,	btn	

Eavesdropping	and	
replay	from		
10	…	100	m	

34	

History	of	RKE:	Rolling	Codes	

uid,	encK(ctr’,	btn)	

35	

uid,	encK(ctr’	+	1,	btn)	

uid,	encK(ctr’	+	2,	btn)	

ctr	

Decrypt	ctr’	
if	(ctr	<	ctr’		<	ctr	+	Δ)	

	ctr	:=	ctr’		
	open	/	close	

	

ctr	+	Δ		

“validity	window”	

History	of	RKE:	Rolling	Codes	

ctr’	incremented	on	
each	button	press,	
replay	fails	

uid,	encK(ctr’,	btn)	

36	

History	of	RKE:	Rolling	Codes	

Option	1:	Attack	key	
management	
Option	2:	Attack	crypto	
	

uid,	encK(ctr’,	btn)	

37	

Previous	Attacks	on	RKE	

•  2007:	Cryptanalysis	of	KeeLoq	garage	door	openers	
(216	plaintext/ciphertext	pairs)	by	Biham	et	al.	

•  2008:	Side-channel	attack	on	KeeLoq	key	
diversification	(Eisenbarth	et	al.)	

•  2010:	Relay	attacks	on	passive	keyless	entry	systems	
(Francillon	et	al.)	

•  2014:	Cesare:	attack	on	2000	–	05	vehicles	
•  2015:	“RollJam”	by	Spencerwhyte	/	Kamkar		

(had	been	proposed	before,	does	not	apply	to	most	modern	vehicles	since	
button	is	authenticated)		

38	

Part	1:	The	VW	Group	System	

VW	Group	RKE	

•  >	10%	worldwide	market	share	
•  Immobilizer	(Megamos)	and	RKE	separate		
for	most	vehicles	

•  Proprietary	RKE	system,	mostly	434.4	MHz	
•  We	analyzed	vehicles	between	~2000	and	today	
•  Four	main	schemes	(VW-1	…	VW-4)	studied	

40	

VW	Group	RKE:	Analysis	

Step	2:	Reverse-engineering	ECUs	

41	

Example:	VW-3	

•  AUT64	is	a	proprietary	block	cipher,	no		
trivial	attacks	known	

•  …	but	key	K3	is	the	same	in	all	VW-3	vehicles	
•  VW-2:	Same	cipher,	different	key	
•  VW-1:	Weak	crypto	(LFSR)	

42	

AUT64K3(uid,	ctr’,	btn’),	btn	

a0 a1 a2 a3 a4 a5 a6 a7

Byte permutation �

a0 a1 a2 a3 a4 a5 a6 a7

a0 a1 a2 a3 a4 a5 a6 a7

g

Example:	VW-4	

•  Used	from	~	2010	onwards	
•  Secure	standard	cipher:	XTEA	
•  …	but	again	one	worldwide	key	K4	
•  Adversary	can	clone	remote	by	eavesdropping	
a	single	rolling	code	

43	

XTEAK4(uid,	ctr’,	btn’),	btn	

VW	RKE	Demo	

44	

Affected	Vehicles	
•  Audi:	A1,	Q3,	R8,	S3,	TT,	other	types	of	Audi	cars		

(e.g.	remote	control	4D0	837	231)	
•  VW:	Amarok,	(New)	Beetle,	Bora,	Caddy,	Crafter,	e-Up,	

Eos,	Fox,	Golf	4,	Golf	5,	Golf	6,	Golf	Plus,	Jetta,	Lupo,	
Passat,	Polo,	T4,	T5,	Scirocco,	Sharan,	Tiguan,	Touran,	Up	

•  Seat:	Alhambra,	Altea,	Arosa,	Cordoba,	Ibiza,	Leon,	MII,	
Toledo	

•  Škoda:	City	Go,	Roomster,	Fabia	1,	Fabia	2,	Octavia,	
Superb,	Yeti	

•  In	summary:	probably	most	VW	group	vehicles	between	
2000	and	today	not	using	Golf	7	(MQB)	platform	

45	

Intermezzo	

•  Cryptographic	algorithms	improving	over	time	
•  But:	Secure	crypto	≠	secure	system	
•  Reverse	engineering	ECU	firmware	yields	a	
few	worldwide	keys	

•  Attack	highly	practical	and	scalable	
•  New	VW	group	system	(MQB	/	Golf	7)	
allegedly	uses	diversified	keys	+	good	crypto	

46	

The	Hitag2	RKE		

Hitag2	in	the	RKE	context	

•  Hybrid	chip	(Immo+RKE)	uses	a	different	
secret	key	for	both	but	the	same	uid	
– This	can	be	eavesdropped	from	100	m/300	ft	

•  136	traces	is	not	practical	in	a	RKE	context,	so	
we	needed	to	improve	the	attack	

•  The	cipher	was	known	so	we	did	a	black-box	
reverse	engineering	of	the	RKE	protocol	

	

	

48	

RKE	protocol	(simplified)	

Diversified	keys	

id1	 k1	 ctr1	

id2	 k2	 ctr2	

id3	 k3	 ctr3	

uid,	btn,	ctr,	MACk,	crc	

ctr1	

If	(ctr1	<	ctr’1		<	ctr1	+	Δ)	
then	ctr1	:=	ctr’1	;	open	
	

MACk	is	32	bits	of	
keystream	

49	

Our	RKE	attack	requires		

•  ≈	8	traces	(key	presses)	
•  Our	$40	Arduino	board	can	collect	them	

uid,	btn,	ctr,	MACk,	crc	

50	

Hitag2	Cipher	

48	bit	internal	state	(LFSR	stream	a0a1…)	
a0…a31	=	id0…id31	
a32…a47	=	k0…k15	
				a48+i	=	k16+i							{data}i										ƒ(ai…a47+i)										i						[0,31]	

	

Initialized	LFSR	=	a32…a79	
	
	

51	

Hitag2	cipher	

48	bit	internal	state	(LFSR	stream	a0a1…)	
a0…a31	=	id0…id31	
a32…a47	=	k0…k15	
				a48+i	=	k16+i							ivi										ƒ(ai…a47+i)										i						[0,31]	

	

Initialized	LFSR	=	a32…a79	
	
	

52	

id	 k0…k15	k16…k47	XOR	ivi	XOR	ƒ(ai…a47+i)	

Score	guess	as	ratio	of	
unknown	input	bits	
with	correct	output	

A	fast	correlation	attack	on	Hitag2	(simplified)	

•  Guess	a	16-bit	window	value		

keystream	

53	

keystream	
Score	guess	as	ratio	of	
unknown	input	bits	
with	correct	output	

A	fast	correlation	attack	on	Hitag2	(simplified)	

54	

keystream	
Score	guess	as	ratio	of	
unknown	input	bits	
with	correct	output	

A	fast	correlation	attack	on	Hitag2	(simplified)	

55	

keystream	
Score	guess	as	ratio	of	
unknown	input	bits	
with	correct	output	

A	fast	correlation	attack	on	Hitag2	(simplified)	

56	

•  Discard	overall	low	scoring	guesses	
•  Increase	window	size	by	one	
•  Repeat	
•  Takes	~1	minute	on	a	laptop	to	recover	the	key	

keystream	
Score	guess	as	ratio	of	
unknown	input	bits	
with	correct	output	

A	fast	correlation	attack	on	Hitag2	(simplified)	

57	

Hitag2	RKE	Attack	Demo	

58	

Vehicles	we	tested	using	Hitag2	RKE	

59	

Opel | Astra H | 2008
Opel | Corsa D | 2009
Fiat | Grande Punto | 2009

Responsible	disclosure	

• We	contacted	VW	Group	in	Dec	2015	and	
NXP	Semiconductors	in	Jan	2016	
•  In	general:	good	cooperation/
communication	
•  Many	manufacturers	are	migrating	to	
better	chips	
•  NXP	has	AES-based	products	

60	

Car	key	Summary	

•  1	trace	is	enough	for	all	4	VW	RKE	systems	
•  4	traces	are	enough	to	bypass	Hitag2	immo	
•  ~8	traces	for	Hitag2	RKE		

•  This	research	may	explain	several	mysterious	
theft	cases/insurance	claims	without	signs	of	
forced	entry	

61	

62	

Connected	and	Autonomous	Vehicles	

				

•  100s	of	ECUs	
•  100s	million	lines	of	code		
•  Sensors	+	fusion	algorithms	
•  V2V,	V2I	communication	
•  No	driver	
•  Summon	your	car	with	an	app?	

Goal	
	

To	secure	the	vehicle’s	
attack	surfaces	

	

Research	Challenges	

				

Securing	ECU	firmware	
•  Epsilon	firmware	

updates	
•  Side-channel	and	fault	

resilience	

Automated	security	
testing	tools	
•  Protocol	State	Fuzzing	
•  Static	analysis	+	

machine	learning	 Securing	Sensors	
•  Radar	
•  Lidar	
•  MEMS	(accelerometer)	
•  Cameras	
•  Underlying	fusion	

algorithms		

Hardware	anchored	V2X	
•  Authentication	+	privacy	
•  Low-latency	crypto	

EPSRC Fellowship
EP/R008000/1

Thanks	for	your	attention!	

